The Klein-gordon Equation on Z2 and the Quantum Harmonic Lattice

ثبت نشده
چکیده

The discrete Klein-Gordon equation on a two-dimensional square lattice satisfies an ` 7→ `∞ dispersive bound with polynomial decay rate |t|−3/4. We determine the shape of the light cone for any choice of the mass parameter and relative propagation speeds along the two coordinate axes. Fundamental solutions experience the least dispersion along four lines interior to the light cone rather than along its boundary, and decay exponentially to arbitrary order outside the light cone. The overall geometry of the propagation pattern and its associated dispersive bounds are independent of the particular choice of parameters. In particular there is no bifurcation of the number or type of caustics that are present. The dispersive bounds imply global well-posedness for small solutions of a nonlinear discrete Klein-Gordon equation. The discrete Klein-Gordon equation is a classical analogue of the quantum harmonic lattice. In the quantum setting, commutators of time-shifted observables experience the same decay rates as the corresponding Klein-Gordon solutions, which depend in turn on the relative location of the observables’ support sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016